UMTS, the Universal Mobile Telecommunications System is the third generation (3G) successor to the second generation GSM based technologies including GPRS, and EDGE. Although UMTS uses a totally different air interface, the core network elements have been migrating towards the UMTS requirements with the introduction of GPRS and EDGE. In this way the transition from GSM to the 3G UMTS architecture does not require such a large instantaneous investment.
UMTS uses Wideband CDMA (WCDMA or W-CDMA) to carry the radio transmissions, and often the system is referred to by the name WCDMA. It is also gaining a third name. Some are calling it 3GSM because it is a 3G migration for GSM.
Specifications and Management
In order to create and manage a system as complicated as UMTS or WCDMA it is necessary to develop and maintain a large number of documents and specifications. For UMTS or WCDMA, these are now managed by a group known as 3GPP - the Third Generation Partnership Programme. This is a global co-operation between six organisational partners - ARIB, CCSA, ETSI, ATIS, TTA and TTC.
The scope of 3GPP was to produce globally applicable Technical Specifications and Technical Reports for a 3rd Generation Mobile Telecommunications System. This would be based upon the GSM core networks and the radio access technologies that they support (i.e., Universal Terrestrial Radio Access (UTRA) both Frequency Division Duplex (FDD) and Time Division Duplex (TDD) modes).
Capabilities
UMTS uses Wideband CDMA - WCDMA - as the radio transmission standard. It employs a 5 MHz channel bandwidth. Using this bandwidth it has the capacity to carry over 100 simultaneous voice calls, or it is able to carry data at speeds up to 2 Mbps in its original format. However with the later enhancements of HSDPA and HSUPA (described in other articles accessible from the cellular telecommunications menu page ) included in later releases of the standard the data transmission speeds have been increased to 14.4 Mbps.
Many of the ideas that were incorporated into GSM have been carried over and enhanced for UMTS. Elements such as the SIM have been transformed into a far more powerful USIM (Universal SIM). In addition to this, the network has been designed so that the enhancements employed for GPRS and EDGE can be used for UMTS. In this way the investment required is kept to a minimum.
A new introduction for UMTS is that there are specifications that allow both Frequency Division Duplex (FDD) and Time Division Duplex (TDD) modes. The first modes to be employed are FDD modes where the uplink and downlink are on different frequencies. The spacing between them is 190 MHz for Band 1 networks being currently used and rolled out.
However the TDD mode where the uplink and downlink are split in time with the base stations and then the mobiles transmitting alternately on the same frequency is particularly suited to a variety of applications. Obviously where spectrum is limited and paired bands suitably spaced are not available. It also performs well where small cells are to be used. As a guard time is required between transmit and receive, this will be smaller when transit times are smaller as a result of the shorter distances being covered. A further advantage arises from the fact that it is found that far more data is carried in the downlink as a result of internet surfing, video downloads and the like. This means that it is often better to allocate more capacity to the downlink.
Where paired spectrum is used this is not possible. However when a TDD system is used it is possible to alter the balance between downlink and uplink transmissions to accommodate this imbalance and thereby improve the efficiency. In this way TDD systems can be highly efficient when used in picocells for carrying Internet data. The TDD systems have not been widely deployed, but this may occur more in the future. In view of its character, it is often referred to as TD-CDMA (Time Division CDMA).
UMTS uses Wideband CDMA (WCDMA or W-CDMA) to carry the radio transmissions, and often the system is referred to by the name WCDMA. It is also gaining a third name. Some are calling it 3GSM because it is a 3G migration for GSM.
Specifications and Management
In order to create and manage a system as complicated as UMTS or WCDMA it is necessary to develop and maintain a large number of documents and specifications. For UMTS or WCDMA, these are now managed by a group known as 3GPP - the Third Generation Partnership Programme. This is a global co-operation between six organisational partners - ARIB, CCSA, ETSI, ATIS, TTA and TTC.
The scope of 3GPP was to produce globally applicable Technical Specifications and Technical Reports for a 3rd Generation Mobile Telecommunications System. This would be based upon the GSM core networks and the radio access technologies that they support (i.e., Universal Terrestrial Radio Access (UTRA) both Frequency Division Duplex (FDD) and Time Division Duplex (TDD) modes).
Capabilities
UMTS uses Wideband CDMA - WCDMA - as the radio transmission standard. It employs a 5 MHz channel bandwidth. Using this bandwidth it has the capacity to carry over 100 simultaneous voice calls, or it is able to carry data at speeds up to 2 Mbps in its original format. However with the later enhancements of HSDPA and HSUPA (described in other articles accessible from the cellular telecommunications menu page ) included in later releases of the standard the data transmission speeds have been increased to 14.4 Mbps.
Many of the ideas that were incorporated into GSM have been carried over and enhanced for UMTS. Elements such as the SIM have been transformed into a far more powerful USIM (Universal SIM). In addition to this, the network has been designed so that the enhancements employed for GPRS and EDGE can be used for UMTS. In this way the investment required is kept to a minimum.
A new introduction for UMTS is that there are specifications that allow both Frequency Division Duplex (FDD) and Time Division Duplex (TDD) modes. The first modes to be employed are FDD modes where the uplink and downlink are on different frequencies. The spacing between them is 190 MHz for Band 1 networks being currently used and rolled out.
However the TDD mode where the uplink and downlink are split in time with the base stations and then the mobiles transmitting alternately on the same frequency is particularly suited to a variety of applications. Obviously where spectrum is limited and paired bands suitably spaced are not available. It also performs well where small cells are to be used. As a guard time is required between transmit and receive, this will be smaller when transit times are smaller as a result of the shorter distances being covered. A further advantage arises from the fact that it is found that far more data is carried in the downlink as a result of internet surfing, video downloads and the like. This means that it is often better to allocate more capacity to the downlink.
Where paired spectrum is used this is not possible. However when a TDD system is used it is possible to alter the balance between downlink and uplink transmissions to accommodate this imbalance and thereby improve the efficiency. In this way TDD systems can be highly efficient when used in picocells for carrying Internet data. The TDD systems have not been widely deployed, but this may occur more in the future. In view of its character, it is often referred to as TD-CDMA (Time Division CDMA).
0 Comments:
<< Home | << Add a comment